5-4 Medians and Altitudes

Objective To identify properties of medians and altitudes of a triangle

You can use different colors for the sets of segments so you can see the pattern more easily.

Getting Ready!

Draw a large acute scalene $\triangle A B C$. On each side, mark the point that is $\frac{1}{5}$ of the distance from one of the side's endpoints, as shown in the diagram. Connect each of these points to the opposite vertex.
Repeat this process for $\frac{1}{4}$ and $\frac{1}{3}$. What do you think the result will be for $\frac{1}{2}$? Check your answer. Were you correct?

MATHEMATICAL PRACTICES

Lesson Vocabulary
median of a triangle

- centroid of a triangle
- altitude of a triangle
- orthocenter of a triangle

Theorem 5-8 Concurrency of Medians Theorem

The medians of a triangle are concurrent at a point that is two thirds the distance from each vertex to the midpoint of the opposite side.

$$
D C=\frac{2}{3} D J \quad E C=\frac{2}{3} E G \quad F C=\frac{2}{3} F H
$$

You will prove Theorem 5-8 in Lesson 6-9

In a triangle, the point of concurrency of the medians is the centroid of the triangle. The point is also called the center of gravity of a triangle because it is the point where a triangular shape will balance. For any triangle, the centroid is always inside the triangle.

Plan

How do you use the centroid?
Write an equation relating the length of the whole median to the length of the segment from the vertex to the centroid.

In the diagram at the right, $X A=8$. What is the length of $\overline{X B}$?
A is the centroid of $\triangle X Y Z$ because it is the point of concurrency of the triangle's medians.

$$
\begin{aligned}
X A & =\frac{2}{3} X B & & \text { Concurrency of Medians Theorem } \\
8 & =\frac{2}{3} X B & & \text { Substitute } 8 \text { for } X A . \\
\left(\frac{3}{2}\right) 8 & =\left(\frac{3}{2}\right) \frac{2}{3} X B & & \text { Multiply each side by } \frac{3}{2} . \\
12 & =X B & & \text { Simplify. }
\end{aligned}
$$

Got It? 1. a. In the diagram for Problem $1, Z A=9$. What is the length of $\overline{Z C}$?

b. Reasoning What is the ratio of $Z A$ to $A C$? Explain.

An altitude of a triangle is the perpendicular segment from a vertex of the triangle to the line containing the opposite side. An altitude of a triangle can be inside or outside the triangle, or it can be a side of the triangle.

How do you determine whether a segment is an altitude or a median? Look at whether the segment is perpendicular to a side (altitude) and/or bisects a side (median).

Problem 2 Identifying Medians and Altitudes

A For $\triangle P Q S$, is $\overline{P R}$ a median, an altitude, or neither? Explain.
$\overline{P R}$ is a segment that extends from vertex P to the line containing $\overline{S Q}$, the side opposite $P . \overline{P R} \perp \overrightarrow{Q R}$, so $\overline{P R}$ is an altitude of $\triangle P Q S$.
B For $\triangle P Q S$, is $\overline{Q T}$ a median, an altitude, or neither? Explain.

$\overline{Q T}$ is a segment that extends from vertex Q to the side opposite Q. Since $\overline{P T} \cong \overline{T S}, T$ is the midpoint of $\overline{P S}$. So $\overline{Q T}$ is a median of $\triangle P Q S$.

Got lt? 2. For $\triangle A B C$, is each segment a median, an altitude, or neither? Explain.
a. $\overline{A D}$
b. $\overline{E G}$
c. $\overline{C F}$

Theorem 5-9 Concurrency of Altitudes Theorem

The lines that contain the altitudes of a triangle are concurrent.

The lines that contain the altitudes of a triangle are concurrent at the orthocenter of the triangle. The orthocenter of a triangle can be inside, on, or outside the triangle.

Think

Which two altitudes should you choose? It does not matter, but the altitude to $\overline{A C}$ is a vertical line, so its equation will be easy to find.

Problem 3 Finding the Orthocenter

$\triangle A B C$ has vertices $A(1,3), B(2,7)$, and $C(6,3)$. What are the coordinates of the orthocenter of $\triangle A B C$?

Know	Need	Plan
The coordinates of the three vertices	The intersection point of the triangle's altitudes	Write the equations of the lines that contain two of the altitudes. Then solve the system of equations.

Step 1 Find the equation of the line containing the altitude to $\overline{A C}$. Since $\overline{A C}$ is horizontal, the line containing the altitude to $\overline{A C}$ is vertical. The line passes through the vertex $B(2,7)$. The equation of the line is $x=2$.

Step 2 Find the equation of the line containing the altitude to $\overline{B C}$. The slope of the line containing $\overline{B C}$ is $\frac{3-7}{6-2}=-1$. Since the product of the slopes of two perpendicular lines is -1 , the line containing the altitude to $\overline{B C}$ has slope 1.

The line passes through the vertex $A(1,3)$. The equation of the line is $y-3=1(x-1)$, which simplifies to $y=x+2$.

Step 3 Find the orthocenter by solving this system of equations: $x=2$

$$
y=x+2
$$

$$
\begin{array}{ll}
y=2+2 & \text { Substitute } 2 \text { for } x \text { in the second equation. } \\
y=4 & \text { Simplify. }
\end{array}
$$

The coordinates of the orthocenter are $(2,4)$.

Got It? 3. $\triangle D E F$ has vertices $D(1,2), E(1,6)$, and $F(4,2)$. What are the coordinates of the orthocenter of $\triangle D E F$?

Perpendicular Bisectors

Angle Bisectors

Medians

Altitudes

Lesson Check

Do you know HOW?

Use $\triangle A B C$ for Exercises 1-4.

1. Is $\overline{A P}$ a median or an altitude?
2. If $A P=18$, what is $K P$?
3. If $B K=15$, what is $K Q$?
4. Which two segments are altitudes?

Do you UNDERSTAND?

C. 5. Error Analysis Your classmate says she drew $\overline{H J}$ as an altitude of $\triangle A B C$. What error did she make?

6. Reasoning Does it matter which two altitudes you use to locate the
 orthocenter of a triangle? Explain.

7. Reasoning The orthocenter of $\triangle A B C$ lies at vertex A. What can you conclude about $\overline{B A}$ and $\overline{A C}$? Explain.

Practice and Problem-Solving Exercises

In $\triangle T U V, Y$ is the centroid.
8. If $Y W=9$, find $T Y$ and $T W$.
9. If $Y U=9$, find $Z Y$ and $Z U$.
10. If $V X=9$, find $V Y$ and $Y X$.

For $\triangle A B C$, is the red segment a median, an altitude, or neither? Explain.
See Problem 1.
11. A

12.

13.

14. $A(0,0)$
$B(4,0)$
15. $\begin{array}{r}A(2,6) \\ B(8,6) \\ C(6,2)\end{array}$
16. $A(0,-2)$
$B(4,-2)$
$C(-2,-8)$

Name the centroid.
17.

18.

Name the orthocenter of $\triangle X Y Z$.
19.

20.

21. Think About a Plan In the diagram at the right, $\overline{Q S}$ and $\overline{P T}$ are altitudes and $m \angle R=55$. What is $m \angle P O Q$?

- What does it mean for a segment to be an altitude?
- What do you know about the sum of the angle measures in a triangle?
- How do you sketch overlapping triangles separately?

Constructions Draw a triangle that fits the given description. Then construct the centroid and the orthocenter.
22. acute scalene triangle, $\triangle L M N$

In Exercises 24-27, name each segment.
24. a median in $\triangle A B C$
25. an altitude in $\triangle A B C$
26. a median in $\triangle B D C$
23. obtuse isosceles triangle, $\triangle R S T$

27. an altitude in $\triangle A O C$
28. Reasoning A centroid separates a median into two segments. What is the ratio of the length of the shorter segment to the length of the longer segment?

Paper Folding The figures below show how to construct altitudes and medians by paper folding. Refer to them for Exercises 29 and 30.

Folding an Altitude

Fold the triangle so that a side $\overline{A C}$ overlaps itself and the fold contains the opposite vertex B.

Folding a Median

Fold one vertex R to another vertex P. This locates the midpoint M of a side.

Unfold the triangle. Then fold it so that the fold contains the midpoint M and the opposite vertex Q.
29. Cut out a large triangle. Fold the paper carefully to construct the three medians of the triangle and demonstrate the Concurrency of Medians Theorem. Use a ruler to measure the length of each median and the distance of each vertex from the centroid.
30. Cut out a large acute triangle. Fold the paper carefully to construct the three altitudes of the triangle and demonstrate the Concurrency of Altitudes Theorem.
31. In the figure at the right, C is the centroid of $\triangle D E F$. If $G F=12 x^{2}+6 y$, which expression represents $C F$?
(A) $6 x^{2}+3 y$
(C) $8 x^{2}+4 y$
(B) $4 x^{2}+2 y$
(D) $8 x^{2}+3 y$
32. Reasoning What type of triangle has its orthocenter on the exterior of
 the triangle? Draw a sketch to support your answer.
33. Writing Explain why the median to the base of an isosceles triangle is also an altitude.
34. Coordinate Geometry $\triangle A B C$ has vertices $A(0,0), B(2,6)$, and $C(8,0)$. Complete the following steps to verify the Concurrency of Medians Theorem for $\triangle A B C$.
a. Find the coordinates of midpoints L, M, and N.
b. Find equations of $\overleftrightarrow{A M}, \overleftrightarrow{B N}$, and $\overleftrightarrow{C L}$.
c. Find the coordinates of P, the intersection of $\overleftrightarrow{A M}$ and $\overleftrightarrow{B N}$. This point is the centroid.

d. Show that point P is on $\overleftrightarrow{C L}$.
e. Use the Distance Formula to show that point P is two thirds of the distance from each vertex to the midpoint of the opposite side.

C Challenge
35. Constructions A, B, and O are three noncollinear points. Construct point C such that O is the orthocenter of $\triangle A B C$. Describe your method.
36. Reasoning In an isosceles triangle, show that the circumcenter, incenter, centroid, and orthocenter can be four different points, but all four must be collinear.
A, B, C, and D are points of concurrency for the triangle. Determine whether each point is a circumcenter, incenter, centroid, or orthocenter. Explain.
37.

38.

39. History In 1765, Leonhard Euler proved that, for any triangle, three of the four points of concurrency are collinear. The line that contains these three points is known as Euler's Line. Use Exercises 37 and 38 to determine which point of concurrency does not necessarily lie on Euler's Line.

Standardized Test Prep

Extended Response

For Exercises 40 and 41, use the figure at the right.
40. If $C R=24$, what is $K R$?
(A) 6
(C) 12
(B) 8
(D) 16
41. If $T R=12$ what is $C P$?
(F) 16
(H) 24

(G) 18
(I) 36
42. The orthocenter of a triangle lies outside the triangle. Where are its circumcenter, incenter, and centroid located in relation to the triangle? Draw and label diagrams to support your answers.

Mixed Review

Is $\overline{X Y}$ a perpendicular bisector, an angle bisector, or neither? Explain.
See Lesson 5-3.
43.

44.

Get Ready! To prepare for Lesson 5-5, do Exercises 45-47.
Write the negation of each statement.
See Lesson 2-2.
45. Two angles are congruent.
46. You are not 16 years old.
47. $m \angle A<90$

5 Mid-Chapter Quiz

Do you know HOW?

Algebra Find the value of x.
1.

2.

Use the figure below for Exercises 3-5.

3. Find $Y Z$.
4. $A X=26$ and $B Z=36$. Find the perimeter of $\triangle X Y Z$.
5. Which angle is congruent to $\angle X B A$? How do you know?

For the figure below, what can you conclude about each of the following? Explain.

6. $\angle C D B$
7. $\triangle A B D$ and $\triangle C B D$
8. $\overline{A D}$ and $\overline{D C}$

In the figure at the right, P is the centroid of $\triangle A B C$.
9. If $P R=6$, find $A P$ and $A R$.
10. If $P B=6$, find $Q P$ and $Q B$.

11. If $S C=6$, find $C P$ and $P S$.

For $\triangle A B C$, is the red line a perpendicular bisector, an angle bisector, a median, an altitude, or none of these? Explain.
12.

13.

14.

15. $\triangle P Q R$ has vertices $P(2,5), Q(8,5)$, and $R(8,1)$. Find the coordinates of the circumcenter and the orthocenter of $\triangle P Q R$.

Do you UNDERSTAND?

16. Writing Explain how to construct a median of a triangle and an altitude of a triangle.
17. Error Analysis Point O is the incenter of scalene $\triangle X Y Z$. Your friend says that $m \angle Y X O=m \angle Y Z O$. Is your friend correct? Explain.

The sides of $\triangle D E F$ are the midsegments of $\triangle A B C$.
The sides of $\triangle G H I$ are the midsegments of $\triangle D E F$.
18. Which sides, if any, of $\triangle G H I$ and $\triangle A B C$ are parallel? Explain.
19. What are the relationships between the side lengths of $\triangle G H I$ and $\triangle A B C$? Explain.

